求所有直角三角函数公式 直角三角函数公式表
根据正弦定理推出来的: 2.S三角形ABC=1/2absinC 3.S三角形ABC=1/2acsinB 4.S三角形ABC=1/2bcsinA
1.诱导公式
sin(-a) = - sin(a)
cos(-a) = cos(a)
sin(π/2 - a) = cos(a)
cos(π/2 - a) = sin(a)
sin(π/2 + a) = cos(a)
cos(π/2 + a) = - sin(a)
sin(π - a) = sin(a)
cos(π - a) = - cos(a)
sin(π+ a) = - sin(a)
cos(π + a) = - cos(a)
2.
两角和与差的三角函数
sin(a + b) = sin(a)cos(b) + cos(
α
)sin(b)
cos(a + b) = cos(a)cos(b) - sin(a)sin(b)
sin(a - b) = sin(a)cos(b) - cos(a)sin(b)
cos(a - b) = cos(a)cos(b) + sin(a)sin(b)
tan(a + b) = [tan(a) + tan(b)] / [1 - tan(a)tan(b)]
tan(a - b) = [tan(a) - tan(b)] / [1 + tan(a)tan(b)]
3.
和差化积公式
sin(a) + sin(b) = 2sin[(a + b)/2]cos[(a - b)/2]
sin(a) sin(b) = 2cos[(a + b)/2]sin[(a - b)/2]
cos(a) + cos(b) = 2cos[(a + b)/2]cos[(a - b)/2]
cos(a) - cos(b) = - 2sin[(a + b)/2]sin[(a - b)/2]
4.
积化和差公式
sin(a)sin(b) = - 1/2[cos(a + b) - cos(a - b)]
cos(a)cos(b) = 1/2[cos(a + b) + cos(a -b)]
sin(a)cos(b) = 1/2[sin(a + b) + sin(a - b)]
5.
二倍角公式
sin(2a) = 2sin(a)cos(b)
cos(2a) = cos2(a) - sin2(a) = 2cos2(a) -1=1 - 2sin2(a)
6.
半角公式
sin2(a/2) = [1 - cos(a)] / 2
cos2(a/2) = [1 + cos(a)] / 2
tan(a/2) = [1 - cos(a)] /sin(a) = sina / [1 + cos(a)]
7.万能公式
sin(a) = 2tan(a/2) / [1+tan2(a/2)]
cos(a) = [1-tan2(a/2)] / [1+tan2(a/2)]
tan(a) = 2tan(a/2) / [1-tan2(a/2)]
sinA=a/c (即角A的对边比斜边);
cosA=b/c (即角A的邻边比斜边);
tanA=a/b (即角A的对边比邻边);
cotA=b/a (即角A的邻边比对边);
secA=c/b (即角A的斜边比邻边);
cscA=c/a (即角A的斜边比对边);
sinAsinA+sinBsinB=1;
sinA/cosA=tanA;tanA=1/cotA
扩展资料:
直角三角形的特点:
1、直角三角形两直角边的平方和等于斜边的平方。如图,∠BAC=90°,则AB2+AC2=BC2(勾股定理)。
2、在直角三角形中,两个锐角互余。如图,若∠BAC=90°,则∠B+∠C=90°。
3、直角三角形中,斜边上的中线等于斜边的一半(即直角三角形的外心位于斜边的中点,外接圆半径R=C/2)。该性质称为直角三角形斜边中线定理。
4、直角三角形的两直角边的乘积等于斜边与斜边上高的乘积。
参考资料来源:
百度百科-三角函数公式
在RT△ABC中,∠C为90°
sinA=a/c sinB=b/c sinC=1
---
sinA=a/2R sinB=b/2R sinC=c/2R (R为三角形外接圆的半径)
cosA=[b^2+c^2-a^2]/[2bc] cosB=[a^2+c^2-b^2]/[2ac] cosC=[a^2+b^2-c^2]/[2ab]
同角三角函数的基本关系倒数关系:
tanα
·cotα=1
sinα
·cscα=1
cosα
·secα=1
商的关系:
sinα/cosα=tanα=secα/cscα
cosα/sinα=cotα=cscα/secα
平方关系:
sin^2(α)+cos^2(α)=1
1+tan^2(α)=sec^2(α)
1+cot^2(α)=csc^2(α)
平常针对不同条件的常用的两个公式
sin^2(α)+cos^2(α)=1
tan
α
*cot
α=1
一个特殊公式
(sina+sinθ)*(sina-sinθ)=sin(a+θ)*sin(a-θ)
证明:(sina+sinθ)*(sina-sinθ)=2
sin[(θ+a)/2]
cos[(a-θ)/2]
*2
cos[(θ+a)/2]
sin[(a-θ)/2]
=sin(a+θ)*sin(a-θ)
在直角三角形中,
⑴a^2+b^2=c^2
[a+b=c=90°]
⑵sina=a/c
(即角a的对边比斜边)→正弦
cosa=b/c
(即角a的邻边比斜边)→余弦
tana=a/b
(即角a的对边比邻边)→正切
cota=b/a
(即角a的邻边比对边)→余切
seca=c/b
(即角a的斜边比邻边)→正割
csca=c/a
(即角a的斜边比对边)→余割
[sinb
cosb
tanb
同理可得]
⑶sinc=1
cosc=0
tanc不存在
[c=90°]
⑷sina=cosb
sinasina+sinbsinb=1
[a+b=90°]
⑸sina/cosa=tana
tana=1/cota
直角三角形中:
正弦:sin
对边比斜边
余弦:cos
邻边比斜边
正切:tan
对边比邻边
余切:cot
邻边比对边
正割:csc
斜边比对边
余割:sec
斜边比邻边
设三角形三个内角分别为a,b,c;对边分别为a,b,c
正弦定理:
a/sina=b/sinb=c/sinc=2r,(r为该三角形外接圆半径)
余弦定理:
c2=a2+b2-2abcosc
b2=a2+c2-2accosb
a2=b2+c2-2bccosa
由余弦定理可推导出:
a=bcosc+ccosb
b=ccosa+acosc
c=acosb+bcosa
海仑公式:
sδabc=√[p(p-a)(p-b)(p-c)],而公式里的p为半周长:
p=(a+b+c)/2
1
三角函数公式大全
一,诱导公式
口诀:(分子)奇变偶不变,符号看象限.
1.
sin
(α+k·360)=sin
α
cos
(α+k·360)=cos
a
tan
(α+k·360)=tan
α
2.
sin(180°+β)=-sinα
cos(180°+β)=-cosa
3.
sin(-α)=-sina
cos(-a)=cosα
4*.
tan(180°+α)=tanα
tan(-α)=tanα
5.
sin(180°-α)=sinα
cos(180°-α)=-cosα
6.
sin(360°-α)=-sinα
cos(360°-α)=cosα
7.
sin(π/2-α)=cosα
cos(π/2-α)=sinα
8*.
sin(3π/2-α)=-cosα
cos(3π/2-α)=-sinα
9*.
sin(π/2+α)=cosα
cos(π/2+a)=-sinα
10*.sin(3π/2+α)=-cosα
cos(3π/2+α)=sinα
二,两角和与差的三角函数
1.
两点距离公式
2.
s(α+β):
sin(α+β)=sinαcosβ+cosαsinβ
c(α+β):
cos(α+β)=cosαcosβ-sinαsinβ
3.
s(α-β):
sin(α-β)=sinαcosβ-cosαsinβ
c(α-β):
cos(α-β)=cosαcosβ+sinαsinβ
4.
t(α+β):
t(α-β):
5*.
三,二倍角公式
1.
s2α:
sin2α=2sinαcosα
2.
c2a:
cos2α=cos2α-sin2a
3.
t2α:
tan2α=(2tanα)/(1-tan2α)
4.
c2a':
cos2α=1-2sin2α
cos2α=2cos2α-1
四*,其它杂项(全部不可直接用)
1.辅助角公式
asinα+bcosα=sin(a+φ),其中tanφ=b/a,其终边过点(a,
b)
asinα+bcosα=cos(a-φ),其中tanφ=a/b,其终边过点(b,a)
2.降次,配方公式
降次:
sin2θ=(1-cos2θ)/2
cos2θ=(1+cos2θ)/2
配方
1±sinθ=[sin(θ/2)±cos(θ/2)]2
1+cosθ=2cos2(θ/2)
1-cosθ=2sin2(θ/2)
3.
三倍角公式
sin3θ=3sinθ-4sin3θ
cos3θ=4cos3-3cosθ
4.
万能公式
5.
和差化积公式
sinα+sinβ=
书p45
例5(2)
sinα-sinβ=
cosα+cosβ=
cosα-cosβ=
6.
积化和差公式
sinαsinβ=1/2[sin(α+β)+sin(α-β)]
书p45
例5(1)
cosαsinβ=1/2[sin(α+β)-sin(α-β)]
sinαsinβ-1/2[cos(α+β)-cos(α-β)]
cosαcosβ=1/2[cos(α+β)+cos(α-β)]
7.
半角公式
书p45
例4
小计:57个
另:三角函数口诀
三角知识,自成体系,
记忆口诀,一二三四。
一个定义,三角函数,
两种制度,角度弧度。
三套公式,牢固记忆,
同角诱导,加法定理。
同角公式,八个三组,
平方关系,导数商数。
诱导公式,两类九组,
象限定号,偶同奇余。
两角和差,欲求正弦,
正余余正,符号同前。
两角和差,欲求余弦,
余余正正,符号相反。
两角相等,倍角公式,
逆向反推,半角极限。
加加减减,变量替换,
积化和差,和奇互变。
同角三角函数的基本关系倒数关系: tanα ·cotα=1 sinα ·cscα=1 cosα ·secα=1 商的关系: sinα/cosα=tanα=secα/cscα cosα/sinα=cotα=cscα/secα 平方关系: sin^2(α)+cos^2(α)=1 1+tan^2(α)=sec^2(α) 1+cot^2(α)=csc^2(α)
平常针对不同条件的常用的两个公式
sin^2(α)+cos^2(α)=1 tan α *cot α=1
一个特殊公式
(sina+sinθ)*(sina-sinθ)=sin(a+θ)*sin(a-θ) 证明:(sina+sinθ)*(sina-sinθ)=2 sin[(θ+a)/2] cos[(a-θ)/2] *2 cos[(θ+a)/2] sin[(a-θ)/2] =sin(a+θ)*sin(a-θ)
在直角三角形中,
⑴a^2+b^2=c^2
[A+B=C=90°]
⑵sinA=a/c (即角A的对边比斜边)→正弦
cosA=b/c (即角A的邻边比斜边)→余弦
tanA=a/b (即角A的对边比邻边)→正切
cotA=b/a (即角A的邻边比对边)→余切
secA=c/b (即角A的斜边比邻边)→正割
cscA=c/a (即角A的斜边比对边)→余割
[sinB cosB tanB 同理可得]
⑶sinC=1
cosC=0
tanC不存在
[C=90°]
⑷sinA=cosB
sinAsinA+sinBsinB=1
[A+B=90°]
⑸sinA/cosA=tanA
tanA=1/cotA
直角三角形中: 正弦:sin 对边比斜边
余弦:cos 邻边比斜边
正切:tan 对边比邻边
余切:cot 邻边比对边
正割:csc 斜边比对边
余割:sec 斜边比邻边
设三角形三个内角分别为A,B,C;对边分别为a,b,c
正弦定理: a/sinA=b/sinB=c/sinC=2R,(R为该三角形外接圆半径)
余弦定理: c2=a2+b2-2abcosC
b2=a2+c2-2accosB
a2=b2+c2-2bccosA
由余弦定理可推导出: a=bcosC+ccosB
b=ccosA+acosC
c=acosB+bcosA
海仑公式: SΔABC=√[p(p-a)(p-b)(p-c)],而公式里的p为半周长:
p=(a+b+c)/2
1 三角函数公式大全 一,诱导公式
口诀:(分子)奇变偶不变,符号看象限.
1. sin (α+k·360)=sin α
cos (α+k·360)=cos a
tan (α+k·360)=tan α
2. sin(180°+β)=-sinα
cos(180°+β)=-cosa
3. sin(-α)=-sina
cos(-a)=cosα
4*. tan(180°+α)=tanα
tan(-α)=tanα
5. sin(180°-α)=sinα
cos(180°-α)=-cosα
6. sin(360°-α)=-sinα
cos(360°-α)=cosα
7. sin(π/2-α)=cosα
cos(π/2-α)=sinα
8*. Sin(3π/2-α)=-cosα
cos(3π/2-α)=-sinα
9*. Sin(π/2+α)=cosα
cos(π/2+a)=-sinα
10*.sin(3π/2+α)=-cosα
cos(3π/2+α)=sinα
二,两角和与差的三角函数
1. 两点距离公式
2. S(α+β): sin(α+β)=sinαcosβ+cosαsinβ C(α+β): cos(α+β)=cosαcosβ-sinαsinβ
3. S(α-β): sin(α-β)=sinαcosβ-cosαsinβ
C(α-β): cos(α-β)=cosαcosβ+sinαsinβ
4. T(α+β):
T(α-β):
5*.
三,二倍角公式 1. S2α: sin2α=2sinαcosα
2. C2a: cos2α=cos2α-sin2a
3. T2α: tan2α=(2tanα)/(1-tan2α)
4. C2a': cos2α=1-2sin2α
cos2α=2cos2α-1
四*,其它杂项(全部不可直接用)
1.辅助角公式
asinα+bcosα=sin(a+φ),其中tanφ=b/a,其终边过点(a, b)
asinα+bcosα=cos(a-φ),其中tanφ=a/b,其终边过点(b,a)
2.降次,配方公式
降次:
sin2θ=(1-cos2θ)/2
cos2θ=(1+cos2θ)/2
配方
1±sinθ=[sin(θ/2)±cos(θ/2)]2
1+cosθ=2cos2(θ/2)
1-cosθ=2sin2(θ/2)
3. 三倍角公式
sin3θ=3sinθ-4sin3θ
cos3θ=4cos3-3cosθ
4. 万能公式
5. 和差化积公式
sinα+sinβ= 书p45 例5(2)
sinα-sinβ=
cosα+cosβ=
cosα-cosβ=
6. 积化和差公式
sinαsinβ=1/2[sin(α+β)+sin(α-β)] 书p45 例5(1)
cosαsinβ=1/2[sin(α+β)-sin(α-β)]
sinαsinβ-1/2[cos(α+β)-cos(α-β)]
cosαcosβ=1/2[cos(α+β)+cos(α-β)]
7. 半角公式 书p45 例4
小计:57个
另:三角函数口诀
三角知识,自成体系, 记忆口诀,一二三四。
一个定义,三角函数,
两种制度,角度弧度。
三套公式,牢固记忆,
同角诱导,加法定理。
同角公式,八个三组,
平方关系,导数商数。
诱导公式,两类九组,
象限定号,偶同奇余。
两角和差,欲求正弦,
正余余正,符号同前。
两角和差,欲求余弦,
余余正正,符号相反。
两角相等,倍角公式,
逆向反推,半角极限。
加加减减,变量替换,
积化和差,和奇互变。
求所有直角三角函数公式
cosA=b\/c (即角A的邻边比斜边);tanA=a\/b (即角A的对边比邻边);cotA=b\/a (即角A的邻边比对边);secA=c\/b (即角A的斜边比邻边);cscA=c\/a (即角A的斜边比对边);sinAsinA+sinBsinB=1;sinA\/cosA=tanA;tanA=1\/cotA
直角三角形的三角函数公式是什么?
sin、cos、tan三种三角函数需根据角度进行确定,以角A为例:sinA=∠A的对边和斜边的比值;cosA=∠A的邻边和斜边的比值;tanA=∠A的对边和邻边的比值;
求所有直角三角函数公式
sina+sinb= 2sin(a+b)\/2cos(a-b)\/2 (将上面积化和差公式用(a+b)\/2代替a, (a-b)\/2代替b即可)sina-sinb= 2cos(a+b)\/2sin(a-b)\/2 (将上面积化和差公式用(a+b)\/2代替a, (a-b)\/2代替b即可)cosa+cosb= 2cos(a+b)\/2cos(a-b)\/2 (将上面积化和差公式用(a+b)\/2代...
直角三角形三角函数是什么?
直角三角形三角函数如下:正弦sin=对边比斜边。余弦cos=邻边比斜边。正切tan=对边比邻边。1、正弦(sine),数学术语,在直角三角形中,任意一锐角∠A的对边与斜边的比叫做∠A的正弦,记作sinA(由英语sine一词简写得来),即sinA=∠A的对边\/斜边。2、余弦(余弦函数),三角函数的一种。在Rt△ABC...
直角三角函数公式是什么?
直角三角形三角函数如下:正弦sin=对边比斜边。余弦cos=邻边比斜边。正切tan=对边比邻边。1、正弦(sine),数学术语,在直角三角形中,任意一锐角∠A的对边与斜边的比叫做∠A的正弦,记作sinA(由英语sine一词简写得来),即sinA=∠A的对边\/斜边。2、余弦(余弦函数),三角函数的一种。在Rt△ABC...
直角三角形公式
公式:在直角三角形中,由于 $B = 90^circ A$,且 $cos = sin theta$,所以余弦定理在直角三角形中可简化为 $b^2 = c^2 + a^2 2accos B$。更常用的直角三角形余弦关系:$cos B = frac{a}{c}$。反三角函数应用:求角度:已知直角三角形的两边,可以利用反三角函数来求对应的角度...
三角函数公式 高中所有的
5、tan(A+B) = (tanA+tanB)\/(1-tanAtanB);6、tan(A-B) = (tanA-tanB)\/(1+tanAtanB);7、cot(A+B) = (cotAcotB-1)\/(cotB+cotA);8、cot(A-B) = (cotAcotB+1)\/(cotB-cotA)。三角函数应用:三角函数一般用于计算三角形中未知长度的边和未知的角度,在导航、工程学以及物理学...
怎么用三角函数求解直角三角形的边长与角度
特殊角函数是30°、45°、60°等角的三角函数值,这些角度的三角函数值是经常用到的,并且利用两角和与差的三角函数公式,可以求出一些其他角度的三角函数值。特殊角函数值如下:1、30度角(π\/6弧度)的边角关系,sin(30°)=1\/2,cos(30°)=√3\/2,tan(30°)=1\/√3= √3\/3。2、45度角...
直角三角函数公式表
直角三角函数公式表如下:正弦函数:sin = 对边\/斜边余弦函数:cos = 邻边\/斜边正切函数:tan = 对边\/邻边这些公式用于描述直角三角形中各个边之间的比例关系。正弦是对边长除以斜边长,余弦是邻边长除以斜边长,而正切则是对边长除以邻边长。在解决与直角三角形相关的问题时,这些公式会非常有用。
直角三角形三角函数
公式:secA = 斜边\/邻边 6. 余割: 定义:余割是正弦的倒数,即任意一锐角∠A的余割值等于它的斜边长度与对边长度的比值。 公式:cscA = 斜边\/对边 这些三角函数在直角三角形中具有重要的应用价值,可以用于解决与角度和边长相关的问题。同时,它们也是现代数学和物理学中不可或缺的工具。